A ridgelet kernel regression model using genetic algorithm

نویسندگان

  • Shuyuan Yang
  • Min Wang
  • Licheng Jiao
چکیده

In this paper, a ridgelet kernel regression model is proposed for approximation of high dimensional functions. It is based on ridgelet theory, kernel and regularization technology from which we can deduce a regularized kernel regression form. Taking the objective function solved by quadratic programming to define the fitness function, we use genetic algorithm to search for the optimal directional vector of ridgelet. The results indicate that this method can effectively deal with high dimensional data, especially those with certain kinds of spatial inhomogeneities. Some illustrative examples are included to demonstrate its superiority.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ridgelet kernel regression

A ridgelet kernel regression method is presented in this paper to approximate multi-dimensional functions, especially those with certain kinds of spatial inhomogeneities. This method is based on ridgelet theory, kernel and regularization techniques from which we can deduce a regularized kernel regression form. By representing this form with quadratic programming and taking the obtained solution...

متن کامل

Determining Effective Factors on Land Surface Temperature of Tehran Using LANDSAT Images And Integrating Geographically Weighted Regression With Genetic Algorithm

Due to urbanization and changes in the urban thermal environment and since the land surface temperature (LST) in urban areas are a few degrees higher than in surrounding non-urbanized areas, identifying spatial factors affecting on LST in urban areas is very important. Hence, by identifying these factors, preventing this phenomenon become possible using general education, inserting rules and al...

متن کامل

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

Prediction of IC50 of 2,5-diaminobenzophenone organic derivatives using informatics-aided genetic algorithm

In the present paper, informatics-aided quantitative structure activity relationship (QSAR) models using genetic algorithm-partial least square (GA-PLS), genetic algorithm-Kernel partial least square (KPLS), and Levenberg-Marquardt artificial neural network (LM ANN) approach were constructed to access the antimalarial activity (pIC50) of 2,5-diaminobenzophenone derivatives. Comparison of errors...

متن کامل

A robust least squares fuzzy regression model based on kernel function

In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005